1. (a) How can the momentum of an object be calculated? (b) In a collision momentum is always conserved. What does this mean? (c) Two trolleys are placed on a frictionless runway as shown in the diagram below. Trolley A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.	Mo	men	tum Past Paper Questions Name
(c) Two trolleys are placed on a frictionless runway as shown in the diagram below. Trolley A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.	1.	(a)	How can the momentum of an object be calculated?
(c) Two trolleys are placed on a frictionless runway as shown in the diagram below. Trolley A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			
(c) Two trolleys are placed on a frictionless runway as shown in the diagram below. Trolley A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			
A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.		(b)	In a collision momentum is always conserved. What does this mean?
A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			
A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys will stick together after colliding. pin cork frictionless runway Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			
Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.		(c)	A has a protruding pin, and trolley B is fitted with a piece of soft cork so that the trolleys
Trolley A has a mass of 2 kg, and trolley B has a mass of 1 kg. Trolley B is stationary. Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			
Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right together.			frictionless runway
(i) Calculate the speed at which trolleys A and B jointly move after the collision.			Trolley A strikes trolley B at a speed of 6 m/s. Both trolleys then move to the right
			(i) Calculate the speed at which trolleys A and B jointly move after the collision.

(Total 8marks)

(4)

	$\begin{array}{c} \left(A \right) \xrightarrow{4 \text{ m/s}} \left(B \right) \end{array}$
After the co	ollision both balls move to the right but the velocity of A is now 1 m/s.
(a) (i)	Calculate the momentum of ball A just before the collision.
	Answer kg m/s
(ii)	What is the total momentum of balls A and B after the collision?
	Answer kg m/s
(iii)	Calculate the momentum of ball A just after the collision.
	Answer kg m/s
(iv)	Calculate the momentum of ball B just after the collision.
	Answer kg m/s
(v)	Calculate the velocity of ball B just after the collision.

(Total 5 marks)